Vendredi 17 mai 2024

Apprentissage à partir d’une cible manquante: Classification et réduction de dimensions
Khalid Benabdeslem
Maître de conférence à Université Claude Bernard Lyon 1

Heure: 13h30
Local: PLT-2551

Résumé: L’ensemble des activités de recherche décrites dans ce séminaire s’inscrit dans le cadre de l’apprentissage semi-supervisé, au sens large, pour l’extraction de connaissances à partir de données multidimensionnelles. Dans cette thématique, on s’intéresse à l’analyse de données partiellement étiquetées qui peut être abordée selon deux grandes familles d’approches. La première est basée sur la propagation de la « supervision », en vue de l’apprentissage supervisé. La seconde est fondée sur la transformation des données étiquetées en contraintes pour leur intégration dans un processus non-supervisé. Les travaux abordés s’inscrivent dans la deuxième famille d’approches avec une difficulté particulière. Il s’agit d’apprendre à partir de données dont la partie étiquetée est relativement réduite par rapport à la partie non-étiquetée. Pour ce faire, on s’intéresse particulièrement aux modèles topologiques, à l’analyse spectrale de graphes et à l’optimisation convexe et non convexe de la préservation de la similiarité. S’appuyant sur ces modèles, on vise à répondre à plusieurs questions qui sont souvent posées dans les communautés d’apprentissage automatique et de fouille de données, et qui demeurent toujours d’actualité. Les réponses à ces questions se traduisent par quelques contributions qui constituent le coeur de ce séminaire : (1) classification topologique sous contraintes, (2) sélection de variables en mode semi-supervisé et (3) co-sélection de variables/instances en mode simultané.