Résumé: Les arbres de décision font partie des modèles les plus utilisés dans le domaine de l’apprentissage automatique en raison de leur flexibilité et de la possibilité d’interpréter leurs prédictions. Toutefois, bien que leur origine remonte à plus de 50 ans, les propriétés théoriques qui affectent leur garantie de généralisation, comme la dimension de Vapnik-Chervonenkis (VC), sont encore peu connues. Lors de cette présentation, je montrerai comment une approche basée sur le concept des partitions permet d’évaluer la dimension VC des souches de décision lorsque les attributs sont à valeur réelle. De plus, j’étendrai cette approche aux arbres avec une structure quelconque pour borner supérieurement et inférieurement leur dimension VC.
Jean-Samuel Leboeuf
Étudiant au doctorat, membre du GRAAL
Heure: 13h30
Local: PLT-3775