Résumé:Une fonction à haut coût est une fonction pour laquelle chaque évaluation est coûteuse (nécessite beaucoup de ressources à calculer). Ce type de fonction ne peut être optimisée grâce aux techniques traditionnelles, car celles-ci assument des évaluations rapides et peu coûteuses. L’une des techniques les plus utilisées pour l’optimisation de fonctions à haut coût est l’optimisation bayésienne. Celle-ci consiste à utiliser un processus gaussien afin de simuler la fonction réelle. La fonction de régression ainsi obtenue est rapide à évaluer. Le but devient alors de trouver comment explorer et exploiter la fonction à haut coût ainsi que la meilleure façon de balancer ces deux comportements. Pour ce faire, nous proposons un nouvel algorithme (SquidSwarm) basé sur l’optimisation bayésienne. SquidSwarm est repose sur un nouvel algorithme d’optimisation de groupe de particules (Particle Swarm Optimization) nommé Time Adaptation Decay Particle Swarm Optimization (TAD-PSO). La première partie de l’exposé consistera à présenter ce nouvel algorithme ainsi qu’à le comparer à certains des autres algorithmes de PSO les plus utilisés (PSO-G, PSO-L, CLPSO, HPSO-TVAC, OLPSO-L, OLPSO-G). En second lieu, nous verrons comment utiliser TAD-PSO dans le contexte de l’optimisation bayésienne, afin de donner naissance à l’algorithme de SquidSwarm. Des résultats préliminaires pour SquidSwarm seront présentés.
http://www2.ift.ulaval.ca/~quimper/Seminaires/