Résumé: L’adaptation de domaine est un problème d’apprentissage automatique rencontré lorsque la distribution d’apprentissage (appelée domaine source) diffère de la distribution de test (appelée domaine cible). Dans cette présentation, nous allons nous situer dans le cas de l’adaptation de domaine non-supervisé où les données du domaine source sont étiquetées et celles du domaine cible sont non-étiquetées. L’objectif est alors de créer des algorithmes capables d’appliquer les connaissances acquises sur le domaine source à un ou plusieurs nouveaux domaines cibles. Voilà quelques exemples d’applications de l’adaptation de domaine:
– Filtrage de Spams: On voudrait qu’un système de filtrage de Spams performant pour un utilisateur donné (domaine source) soit également bon pour un autre utilisateur recevant des e-mails de natures différentes (domaine cible).
– Analyse de sentiments: On possède deux ensembles de textes critiques concernant des films et des livres où chaque critique de film est accompagnée d’une côte, mais qu’aucune critique de livre ne possède sa côte. À partir de ces données, on désire avoir un modèle capable de prédire la côte d’un livre à partir de sa critique.
Afin de résoudre cette problématique, Nous proposons un algorithme d’apprentissage du type réseau de neurones (qu’on appelle DANN). Notre algorithme trouve une nouvelle représentation des données pour laquelle le réseau de neurones permet de bien classifier les données du domaine source et n’est pas capable de distinguer les données sources des données cibles.
Lors de cette présentation, nous allons commencer par voir comment et quand il est possible d’apprendre un modèle d’apprentissage performant sur le domaine cible, en utilisant seulement les données étiquetées de la distribution source et les données non-étiquetées de la distribution cible. Nous allons aussi voir les grands types d’algorithmes d’adaptation de domaine, les travaux théoriques et enfin nous présenterons notre algorithme DANN.
http://www2.ift.ulaval.ca/~quimper/Seminaires/